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Resonant scattering of edge waves by longshore
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The resonant scattering of low-mode progressive edge waves by small-amplitude
longshore periodic depth perturbations superposed on a plane beach has recently
been investigated using the shallow water equations (Chen & Guza 1998). Coupled
evolution equations describing the variations of edge wave amplitudes over a finite-
size patch of undulating bathymetry were developed. Here similar evolution equations
are derived using the full linear equations, removing the shallow water restriction of
small (2N + 1)θ, where N is the maximum mode number considered and θ is the
unperturbed planar beach slope angle. The present results confirm the shallow water
solutions for vanishingly small (2N + 1)θ and allow simple corrections to the shallow
water results for small but finite (2N + 1)θ. Additionally, multi-wave scattering cases
occurring only when (2N + 1)θ = O(1) are identified, and detailed descriptions are
given for the case involving modes 0, 1, and 2 that occurs only on a steep beach with
θ = π/12.

1. Introduction
The resonant scattering of low-mode progressive edge waves by small-amplitude

longshore periodic depth perturbations superposed on a gently sloping planar beach
was recently investigated using the shallow water equations (Chen & Guza 1998;
hereafter referred to as CG). In single-wave scattering, an incident edge wave is
resonantly scattered into a single additional progressive edge wave having the same
or different mode number (i.e. longshore wavenumber), and propagating in the same
or opposite direction (forward and backward scattering, respectively), as the incident
edge wave. Backscattering into an edge wave with the same mode number as the
incident edge wave, the analogue of Bragg scattering of surface waves (Heathershaw
1982; Mei 1985), is a special case of single-wave backward scattering. In multi-wave
scattering, simultaneous forward and backward resonant scattering results in several
(rather than only one) new progressive edge waves.

The shallow water equations used by CG require (2N + 1)θ � 1, where N is the
maximum mode number considered and θ is the beach slope angle in radians. Here
this restriction is removed by using the full linear theory. The shallow water results are
recovered for vanishingly small (2N+1)θ, and the effect of finite beach slope is shown.
Additionally, multi-wave scattering cases occurring only when (2N + 1)θ = O(1) are
investigated. The paper is organized as follows. The basic full theory equations are
given in § 2. In § 3, single-wave scattering equations and solutions for the slowly
varying amplitudes of the incident and resonantly scattered edge waves are obtained
and compared with their counterparts in the shallow water theory. In § 4, full theory
equations for multi-wave scattering involving modes 0 and 1 are compared with
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previous shallow water results, and a multi-wave scattering case involving modes 0, 1,
and 2 at steep beach angle θ = π/12 is described. In § 5, finite-slope effects are shown
to be small for the examples considered in CG.

2. Basic equations
Cartesian coordinates are used, with the z-axis vertically upwards (the mean sea

surface is located at z = 0), the x-axis pointing seawards (the mean shoreline is located
at x = z = 0), and the y-axis parallel to the undisturbed shoreline. The governing
equations for three-dimensional linear edge waves propagating over a plane beach
(depth variation h0(x) = sx) with superposed small-amplitude, longshore periodic
perturbations (h1(x, y)) are

Φxx + Φyy + Φzz = 0, −sx− h1(x, y) < z < 0, (2.1a)

Φtt + gΦz = 0, z = 0, (2.1b)

Φz + sΦx + Φxh1x + Φyh1y = 0, z = −sx− h1(x, y), (2.1c)

where Φ is the velocity potential, g is gravitational acceleration, and s = tan θ is the
unperturbed beach slope (θ is the beach slope angle in radians). The ratio of the
typical slope of the depth perturbation to the unperturbed beach slope, ε = O(|∇h1|/s),
is assumed small and used as the perturbation parameter.

To consider the scattering of a mode-n edge wave propagating in the positive y-
direction with (positive) wavenumber kn and frequency ω over an undulating beach,
introduce the slow variables T = εt, Y = εy, and the multiple-scale expansion

Φ = Φ0(t, x, y, z, T , Y ) + εΦ1(t, x, y, z, T , Y ) + O(ε2). (2.2)

The longshore periodic depth perturbation with wavenumber kt is expressed as

h1 = c0(x) +
[
c1(x)eikty + ∗] , (2.3)

where ∗ denotes complex conjugate. Substituting (2.2) into (2.1), replacing h1 by εh1,
and expanding the bottom boundary condition (2.1c) about z = −sx yields equations
at O(ε0)

Φ0xx + Φ0yy + Φ0zz = 0, −sx < z < 0, (2.4a)

Φ0tt + gΦ0z = 0, z = 0, (2.4b)

Φ0z + sΦ0x = 0, z = −sx, (2.4c)

and at O(ε)

Φ1xx + Φ1yy + Φ1zz = −2Φ0yY , −sx < z < 0, (2.5a)

Φ1tt + gΦ1z = −2Φ0tT , z = 0, (2.5b)

Φ1z + sΦ1x = (Φ0zz + sΦ0xz) h1 − (Φ0xh1x + Φ0yh1y

)
, z = −sx. (2.5c)

The wavenumber kt of the perturbed depth (2.3) satisfies the resonance condition

kt = kn − km, (2.6)

where the wavenumbers kn and km of mode-n and mode-m edge waves satisfy the
linear edge wave dispersion relation (Ursell 1952)

ω2 = gkn sin (2n+ 1)θ = g|km| sin (2m+ 1)θ (2.7)

with (2j + 1)θ < π/2 for all allowed mode numbers j.
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3. Single-wave scattering
3.1. Evolution equations and solutions

Anticipating that interaction between the perturbed bathymetry and the incident
mode-n edge wave resonantly excites only a mode-m edge wave (single-wave scatter-
ing), write the O(ε0) solution as

Φ0 = A0(T , Y )φn(x, z; kn)e
i(kny−ωt) + B0(T , Y )φm(x, z; |km|)ei(kmy−ωt) + ∗, (3.1)

where the edge wave velocity potentials are given by

φj(x, z; kj) =

[
1 + 2

j∑
i=1

Aij

]−1{
exp [−kjx cos θ + kjz sin θ]

+

j∑
i=1

Aij
{

exp
[−kjx cos (2i− 1)θ − kjz sin (2i− 1)θ

]
+ exp

[−kjx cos (2i+ 1)θ + kjz sin (2i+ 1)θ
] }}

(j = m, n), (3.2)

with

Aij = (−1)i
i∏
l=1

tan(j − l + 1)θ

tan(j + l)θ
(3.3)

(Ursell 1952). Note that φj is normalized to unity at the shoreline (x = z = 0).
Equations for the slowly varying edge wave amplitudes A0 and B0 in (3.1), deter-

mined from solvability conditions at O(ε), are

A0T + CgnA0Y = i
[
αnCgnA0 + r−1

mnβ
±
nmCgmB0

]
, (3.4a)

B0T ± CgmB0Y = i
[
αmCgmB0 + rmn(β

±
nm)∗CgnA0

]
, (3.4b)

where

Cgn = dω/dkn = ω/2kn, Cgm = dω/d|km| = ω/2|km| (3.5)

are the group velocity magnitudes of mode-n and mode-m edge waves, + and − signs
correspond to forward and backward scattering, respectively, and

αj =
gdj

2C2
gj

∫ ∞
0

{[
c0(φjx)

b
]
x
− k2

j c0φ
b
j

}
φbjdx, dj = cos(2j + 1)θ (j = n, m), (3.6)

rmn = (dm/dn)
1/2, (3.7)

β±nm =
g(dndm)1/2

2CgmCgn

{
ω2

gs
c1(0)−

∫ ∞
0

c1

[
(φmx)

b(φnx)
bsec2θ ± |km|knφbmφbn

]}
dx. (3.8)

The superscript b indicates that the corresponding function is evaluated at the sea
floor z = −sx. The full theory evolution equations (3.4) have the same structure as
their counterparts (2.16CG) derived from the shallow water equations (hereafter an
equation number followed by CG refers to the corresponding equation in Chen &
Guza 1998). The full theory formulas for the coefficients αj (3.6) and β±nm (3.8) are
also similar to their shallow water analogues (2.18CG) and (2.19CG), respectively.
Conservation of the total edge wave energy during single-wave scattering follows
from (3.4), yielding

(En + Em)T +
(
CgnEn ± CgmEm)Y = 0, (3.9)
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where

En = ρ|A0|2 tan(2n+ 1)θ, Em = ρ|B0|2 tan(2m+ 1)θ (3.10)

are the edge wave energies (per unit longshore length) for mode n and m.
Full theory solutions for single-wave backward and forward scattering (3.4) over

a finite-length longshore periodic depth perturbation spanning 0 6 Y 6 L are
now discussed. The incident edge wave is allowed a slight frequency difference (i.e.
detuning) εΩ from the resonant frequency ω and a corresponding wavenumber
detuning εΩ/Cgn from the resonant wavenumber kn, where Ω/ω is O(1).

With single-wave backscattering the amplitude variation over the undulating region
is written as

A0 =
a0g

2iω
T (Y )ei[(αn−αm+Ω/Cgn−Ω/Cgm)Y /2−ΩT ], 0 6 Y 6 L, (3.11a)

B0 =
a0g

2iω
rmn(Cgn/Cgm)S(Y )ei[(αn−αm+Ω/Cgn−Ω/Cgm)Y /2−ΩT ], 0 6 Y 6 L, (3.11b)

where a0 is the incident wave amplitude, and |T | and |S | are transmission and
scattering coefficients, respectively. Substitution of (3.11) into (3.4) with the − sign
yields evolution equations for T and S that are identical to the shallow water
versions. The character of the backscatter solutions (i.e. exponential or oscillatory
spatial variation of T and S) depends on whether the magnitude of the total effective
detuning wavenumber

K =
(
αn + αm + Ω/Cgn + Ω/Cgm

)
/2 (3.12)

is less than, equal to, or greater than the critical (or cutoff) wavenumber |β−nm|
(see (3.7CG)–(3.8CG), (3.11CG), and (3.13CG)–(3.14CG)). Forward scattered and
transmitted edge wave amplitudes, written as

A0 =
a0g

2iω
T (Y )ei[(αn+αm+Ω/Cgn+Ω/Cgm)Y /2−ΩT ], 0 6 Y 6 L, (3.13a)

B0 =
a0g

2iω
rmn(Cgn/Cgm)S(Y )ei[(αn+αm+Ω/Cgn+Ω/Cgm)Y /2−ΩT ], 0 6 Y 6 L, (3.13b)

are oscillatory over the corrugated region irrespective of the detuning magnitude, and
solutions for T and S in (3.13) are again identical to their shallow water counterparts
(3.28GC)–(3.30CG).

Given equal detuning wavenumbers K and scattering coefficients β±nm, the single-
wave backward and forward scattering solutions for T and S over the same undulating
bathymetry are identical in the full and shallow water theories. However, the solutions
differ because K and β±nm in the full and shallow water theories are generally not
equal.

3.2. Comparison with shallow water theory for small beach slope

Evolution equations and solutions for single-wave scattering based on the full theory
are expanded for small beach angle θ = O(ε1/2/(2N + 1)) and compared with their
shallow water counterparts to show the effect of finite beach slope.

For a given topographic wavenumber kt, the full theory resonant frequency and
wavenumbers (ωf, kfn , and kfm) are found from the resonance condition (2.6) and the
full edge wave dispersion relation (2.7). The corresponding shallow water resonant
frequency and wavenumbers (ωs, ksn, and ksm) also satisfy (2.6) but the dispersion
relation is

(ωs)2 = g(2n+ 1)ksn tan θ = g(2m+ 1)|ksm| tan θ. (3.14)
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For small (2N + 1)θ the relationships between the resonant frequencies and
wavenumbers in the full and shallow water theories are

ωs = ωf
{

1 + ε∆Ω±/ωf + O(ε2)
}
, ∆Ω± = ωf[2∓ (2n+ 1)(2m+ 1)]θ̂2/12, (3.15a)

ksn = kfn

{
1− ε(2n+ 1) [(2n+ 1)± (2m+ 1)] θ̂2/6 + O(ε2)

}
, (3.15b)

|ksm| = |kfm|
{

1− ε(2m+ 1) [(2m+ 1)± (2n+ 1)] θ̂2/6 + O(ε2)
}
, (3.15c)

where θ2 = εθ̂2, and signs are vertically ordered, corresponding to single-wave forward
and backward scattering, respectively. Note that in the shallow water theory the phases
of the incident and scattered edge waves are (ksny−ωst) and (ksmy−ωst), respectively,
whereas in the full linear theory they are (kfny−ωft) and (kfmy−ωft), respectively (see
(2.10CG)–(2.11CG) and (3.1)). To facilitate comparison of the full and shallow water
theories, (3.15) is used to cast the full theory amplitudes Af0(T , Y ) and Bf0 (T , Y ) as

A
f
0 = Âs0 exp

{
−ikfn (2n+ 1)[(2n+ 1)± (2m+ 1)]θ̂2Y /6− i∆Ω±T

}
, (3.16a)

B
f
0 = B̂s0 exp

{
−i|kfm|(2m+ 1)[(2n+ 1)± (2m+ 1)]θ̂2Y /6− i∆Ω±T

}
, (3.16b)

where Âs0(T , Y ) and B̂s0(T , Y ) are the wave amplitudes associated with shallow water
phases (ksny−ωst) and (ksmy−ωst), respectively. Substituting (3.16) into the governing

equations for Af0 and B
f
0 (3.4), expanding the coefficients about θ = 0, using (3.15),

and neglecting higher-order terms yields

Âs0T + Cs
gnÂ

s
0Y = i

[{
αsn + ksn[2 + (2n+ 1)2]θ̂2/6

}
Cs
gnÂ

s
0 + β±nmsC

s
gmB̂

s
0

]
, (3.17a)

B̂s0T ± Cs
gmB̂

s
0Y = i

[{
αsm + |ksm|[2 + (2m+ 1)2]θ̂2/6

}
Cs
gmB̂

s
0 + (β±nms)

∗Cs
gnÂ

s
0

]
. (3.17b)

We have used αfj = αsj[1 +O(ε)] and β±nmf = β±nms[1 +O(ε)], as follows from (3.6)–(3.8)

and (2.18CG)–(2.19CG) using φbj = Lj(2k
s
jx)e−ksjx + O(θ2) and (φjx)

b = d[Lj(2k
s
jx)

e−ksjx]/dx + O(θ2) (Lj(χ) is the Laguerre polynomials of order j and φbj is the corre-
sponding full theory velocity potential at the sea floor).

Equations (3.17) are obtained by rewriting the full theory amplitudes in a form
appropriate for shallow water (3.16) and expanding for small beach angle θ =
O(ε1/2/(2N + 1)). Comparison with the shallow water evolution equations (2.16CG)

shows that the additional terms proportional to θ̂2 in (3.17) arise solely from the
differences in the dispersion relations that lead to differences in the calculated resonant
frequencies and wavenumbers (3.15), and not from the different spatial structures of
the velocity potentials or differences in the group velocities. The shallow water
evolution equations (2.16CG) can therefore be corrected by replacing αsn and αsm with

α̂sn = αsn + ksn[2 + (2n+ 1)2]θ̂2/6, α̂sm = αsm + |ksm|[2 + (2m+ 1)2]θ̂2/6, (3.18)

respectively.
The simplicity of the full theory solutions for single-wave scattering allows direct

comparison with the corresponding shallow water solutions. Expanding the full
solutions Af0 and B

f
0 given by (3.11) and (3.13) for small θ, neglecting O(θ2) terms,

and writing the results in the form of (3.16) yields

Âs0 =
a0g

2iω
T̂ s exp

{
i[(α̂sn ± α̂sm + Ωs/Cs

gn ± Ωs/Cs
gm)Y /2− ΩsT ]

}
, (3.19a)
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B̂s0 =
a0g

2iω
(Cs

gn/C
s
gm)Ŝ s exp

{
i[(α̂sn ± α̂sm + Ωs/Cs

gn ± Ωs/Cs
gm)Y /2− ΩsT ]

}
, (3.19b)

for 0 6 Y 6 L, where Ωf = Ωs+∆Ω±+O(ε) has been used (εΩf (εΩs) is the difference
between the incident wave frequency and the full theory (shallow water) resonant
frequency ωf (ωs), and ε∆Ω± is the frequency shift from ωf to ωs given by (3.15a)).
T̂ s and Ŝ s, obtained by expanding the full solutions, are (as expected) solutions of
the expanded evolution equations (3.17) under transformation (3.19). T̂ s and Ŝ s can
also be obtained from the shallow water solutions Ts and Ss (CG) by replacing the
effective shallow water detuning wavenumber Ks = (αsn ∓ αsm + Ωs/Cs

gn ∓ Ωs/Cs
gm)/2

with

K̂s = (α̂sn ∓ α̂sm + Ωs/Cs
gn ∓ Ωs/Cs

gm)/2 = Ks + [2∓ (2n+ 1)(2m+ 1)]θ̂2kt/12

= 1
2

[
αsn ∓ αsm + (Ωs + ∆Ω±)/Cs

gn ∓ (Ωs + ∆Ω±)/Cs
gm

]
. (3.20)

The effect of finite beach slope on the variation of wave amplitudes and energy
fluxes (i.e. of |Ts| and |Ss|) can thus be incorporated in the shallow water the-
ory by an additional frequency shift ε∆Ω± from ωs (see (3.20)), yielding a total
frequency detuning of ε(Ωs + ∆Ω±). This additional frequency detuning, however,
cannot accommodate the phase shift in the exponentials in the complete solutions
(3.19) corresponding to the correction in αsj (3.18), i.e. α̂sn ± α̂sm + Ωs/Cs

gn ± Ωs/Cs
gm 6=

αsn ± αsm + (Ωs + ∆Ω±)/Cs
gn ± (Ωs + ∆Ω±)/Cs

gm.
When (2N+1)θ = O(ε), the difference in the full and shallow dispersion relations is

negligible in the present approximation, and the shallow water and full linear theories
are equivalent. However, when (2N+1)θ = O(ε1/2), the full and shallow water theories
give qualitatively different predictions for single-wave backscattering if the beach angle
θ is large enough that the detuning correction in (3.20) changes the effective detuning
wavenumber from subcritical (i.e. |Ks| < |β−nm|) to supercritical (i.e. |K̂s| > |β−nm|)
or vice versa. For example, the shallow water theory predicts that the amplitude
variation of the incident and backscattered waves over the undulating region is
exponential when the total effective detuning Ks = 0, but oscillatory amplitude
variation is predicted (i.e. |K̂s| > |β−nm|) by the full linear theory when Ks = 0

and θ̂2 = θ2/ε > 12|β−nm|/{[2 + (2n + 1)(2m + 1)]kt} (see (3.20)). The dimensional
beach slopes corresponding to these changes in the character of the shallow water
backscatter solutions are discussed in § 5. In single-wave forward scattering the wave
amplitudes are oscillatory regardless of the detuning magnitude, so the finite-slope
correction does not qualitatively change the solutions.

4. Multi-wave scattering
The single-wave scattering assumption, that the interaction of the incident and

scattered waves with the periodic topography will not excite additional free edge
wave(s), is not always satisfied. Multi-wave scattering occurs when |2kn − km| and/or
|2km − kn| satisfy the dispersion relation (2.7) for some mode number(s). When the
beach angle θ = π/12 = 15◦, the perturbed bathymetry with wavenumber kt =
k0 − k1 = k1 + k2 simultaneously forward scatters mode pair (0, 1) and backward
scatters mode pair (1, 2). The final multi-wave state in this case involves three waves
with three different mode numbers: modes 0 and 1 propagating in the same direction
and mode 2 in the opposite direction. Note that when θ = π/12 only mode-0, mode-1,
and mode-2 edge waves exist (since (2N+1)θ < π/2) and all three modes are involved
in the scattering process. Multi-wave scattering cases involving a high-mode edge wave
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(N > 5) occurring when θ < 7◦ have also been identified. For example, the perturbed
bathymetry with wavenumber kt = 2k5 = k1 − k5 at θ = 5.802◦ simultaneously
backward scatters mode pair (5, 5) and forward scatters mode pair (1, 5), resulting
in four waves in the final state: two mode-1 and two mode-5 propagating in both
directions. These particular multi-wave scattering cases do not occur in the shallow
water theory because (2N + 1)θ is O(1) and there are large differences between the
exact (2.7) and shallow water (3.14) edge wave dispersion relations. On the other
hand, for small (2N + 1)θ the shallow and full theory dispersion relations are similar,
and multi-wave scattering predicted by the shallow water theory is also expected to
occur in the full theory. Below, full theory evolution equations are first derived for
the multi-wave scattering case involving two different mode numbers (0 and 1) on a
gentle slope studied by CG with the shallow water equations; finite-slope corrections
to the CG results are obtained. Multi-wave scattering of all three possible modes (0, 1,
and 2) at finite beach angle θ = π/12 is discussed next. Solutions for the simultaneous
scattering of waves with three different modes have not been presented previously.

4.1. Multi-wave scattering of modes 0 and 1 with small beach slope

According to the shallow water dispersion relation (3.14), topography with wavenum-
ber kt = 2k1 = k0 − k1 will simultaneously backward scatter the mode pair (1, 1) and
forward scatter the mode pair (0, 1), resulting in four wave components (modes 0 and
1 propagating in both directions). For small beach slope, the full theory dispersion
relation (2.7) expanded in θ yields

k0 = 3k1 − 4k1θ
2 + O(θ4), (4.1)

so exact resonance occurs in the shallow water theory but not with finite θ. The
lowest-order full theory velocity potential for this case is written as

Φ0 = φ0(x, z; k0)
[
A+

0 (T , Y )ei(k0y−ωt) + A−0 (T , Y )ei(−k0y−ωt)]
+φ1(x, z; k1)

[
B+

0 (T , Y )ei(k1y−ωt) + B−0 (T , Y )ei(−k1y−ωt)]+ ∗, (4.2)

with the topographic wavenumber kt = 2k1 (equivalent results are obtained if kt =
k0 − k1 is instead used to determine the resonant frequency ω). Solvability conditions
at O(ε) again yield evolution equations for the lowest-order amplitudes A±0 and B±0 :

A+
0T + Cg0A

+
0Y = i[α0Cg0A

+
0 + r−1

10 β
+
01Cg1B

+
0 ei4θ̂2k1Y ], (4.3a)

A−0T − Cg0A
−
0Y = i[α0Cg0A

−
0 + r−1

10 (β+
01)
∗Cg1B

−
0 e−i4θ̂2k1Y ], (4.3b)

B+
0T + Cg1B

+
0Y = i[α1Cg1B

+
0 + r10(β

+
01)
∗Cg0A

+
0 e−i4θ̂2k1Y + β−11Cg1B

−
0 ], (4.3c)

B−0T − Cg1B
−
0Y = i[α1Cg1B

−
0 + r10β

+
01Cg0A

−
0 ei4θ̂2k1Y + (β−11)

∗Cg1B
+
0 ], (4.3d)

where as previously θ2 = εθ̂2. The factor ei4θ̂2k1Y in (4.3) reflects the O(εθ̂2) difference
between k0 and 3k1 (4.1) (the difference is zero in the shallow water theory, so this
factor does not appear in (2.24CG)). Energy conservation follows from (4.3).

For multi-wave scattering involving modes 0 and 1 on a gentle beach slope with
θ = O(ε1/2), the relations between (ωs, ks0, k

s
1) and (ωf, k

f
0 , k

f
1 ) with kt = 2kf1 are

ωs = ωf[1 + 11
12
εθ̂2 + O(ε2)], ks0 = k

f
0 [1 + 4

3
εθ̂2 + O(ε2)], ks1 = k

f
1 = kt/2, (4.4)

which implies that

A±0f = Â±0s exp[iθ̂2(± 4
3
k
f
0Y − 11

12
ωfT )], B±0f = B̂±0s exp (− 11

12
iθ̂2ωfT ), (4.5)
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from (4.2) and (2.23CG), where Â±0s and B̂±0s are the wave amplitudes associated with
shallow water phases. Substituting (4.5) into (4.3) yields

Â+
0T + Cg0Â

+
0Y = i[(α0 + k0θ̂

2/2)Cg0Â
+
0 + β+

01Cg1B̂
+
0 ], (4.6a)

Â−0T − Cg0Â
−
0Y = i[(α0 + k0θ̂

2/2)Cg0Â
−
0 + (β+

01)
∗Cg1B̂

−
0 ], (4.6b)

B̂+
0T + Cg1B̂

+
0Y = i[(α1 + 11k1θ̂

2/6)Cg1B̂
+
0 + (β+

01)
∗Cg0Â

+
0 + β−11Cg1B̂

−
0 ], (4.6c)

B̂−0T − Cg1B̂
−
0Y = i[(α1 + 11k1θ̂

2/6)Cg1B̂
−
0 + β+

01Cg0Â
−
0 + (β−11)

∗Cg1B̂
+
0 ], (4.6d)

where the subscript s has been dropped for brevity. The differences between (4.6) and
its shallow water counterpart (2.24CG) are again in the α terms and arise from the
different dispersion relations. The shallow water evolution equations (2.24CG) can be
corrected by the following simple substitution

α0 → α0 + k0θ̂
2/2, α1 → α1 + 11k1θ̂

2/6. (4.7)

In the single-wave scattering case exact resonances are possible in both full and
shallow theories, and there is a frequency shift ε∆Ω± (3.15a) that can render a
detuned resonance in the shallow water theory into an exactly tuned resonance in the
full theory for a given beach slope (see (3.20)). In contrast, the multi-wave resonances
are not exact at O(θ2) in the full theory (see (4.1)), so there is no frequency shift
equivalent to the above changes (4.7) in α0 and α1.

When θ = O(ε), the correction in (4.7) is negligible and the shallow water and
full linear theories predict identical multi-wave scattering involving modes 0 and 1.

If θ = O(ε1/2), then θ̂2 = O(1) and the solutions of (4.6) (or equivalently (4.3)) may

differ significantly from those of (4.6) with θ̂2 = 0, i.e. the solutions of (2.24CG). The
effect of finite θ on a perfectly tuned (based on the shallow water dispersion relation)
mode-0 incident wave propagating over a long extent of beach cusps εh1(x, y) =
ace
−πx/λc cos(2πy/λc), where ac and λc are the cusp amplitude and wavelength, is

shown in terms of normalized energy fluxes in figure 1 (hereafter the energy flux
of a mode-i forward (backward) propagating wave normalized by the energy flux
of a mode-j incident wave at Y = 0 is denoted as F+

ij (Y ) (F−ij (Y )) with the energy

given by (3.10)). Typical solutions are shown for θ̂2 in each of the four regions
where the characteristic equation of (4.6) has different types of roots (see CG for
details). For the particular shape beach cusps considered here, the roots change

character when k0|β+
01β
−
11|−1/2θ̂2 = 0.545, 2.486, and 3.491. The solutions of (4.6) with

k0|β+
01β
−
11|−1/2θ̂2 > 0.545 (figure 1b–d), where backscattering is weak and the wave

field over the perturbed depth is dominated by the incident mode-0 and the forward

scattered mode-1 edge waves, differ significantly from the solutions with θ̂2 = 0 (i.e.
the solutions of (2.24CG)) (figure 1a), where backscattering is nearly complete. For

large enough θ̂2, forward scattering is also suppressed (not shown).

4.2. Multi-wave scattering at beach angle θ = π/12

When θ = π/12, multi-wave resonances involving a mode-0 and a mode-1 edge wave
propagating in the same direction and a mode-2 in the opposite direction are exact.
The O(ε0) velocity potential is written as

Φ0 = A0(T , Y )φ0(x, z; k0)e
i(±k0y−ωt) + B0(T , Y )φ1(x, z; k1)e

i(±k1y−ωt)

+ C0(T , Y )φ2(x, z; k2)e
i(∓k2y−ωt) + ∗, (4.8)
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Figure 1. Spatial variations of normalized energy fluxes (——, F+
00; − · −, F+

10; · · · ·, F−00; and

- - -, F−10) for multi-wave scattering over beach cusps spanning a fixed length |β+
01β
−
11|1/2L = 10.0, for

different beach slopes θ̂, k0|β+
01β
−
11|−1/2θ̂2 = 0 (a) (note that F+

00 ≈ F−00 and F+
10 ≈ F−10), 1.5 (b), 3.0 (c),

and 9.0 (d). The detuning vanishes in the shallow water limit (θ̂ = 0) and increases as θ̂ increases. The
incident wave is mode 0 so boundary conditions are F+

00(0) = 1 and F+
10(0) = F−00(L) = F−10(L) = 0.

with the topographic wavenumber kt = k0 − k1 = k1 + k2, where A0, B0, and C0 are
proportional to the amplitudes of mode 0, 1, and 2, respectively; signs are vertically
ordered, corresponding to a mode-0 or mode-1 incident wave, and a mode-2 incident
wave, respectively. Solvability conditions at O(ε) yield evolution equations for the
lowest-order edge wave amplitudes

A0T + Cg0A0Y = i
[
α0Cg0A0 + r−1

10 β
+
01Cg1B0

]
, (4.9a)

B0T + Cg1B0Y = i
[
α1Cg1B0 + r10(β

+
01)
∗Cg0A0 + r−1

21 β
−
12Cg2C0

]
, (4.9b)

C0T − Cg2C0Y = i
[
α2Cg2C0 + r21(β

−
12)
∗Cg1B0

]
, (4.9c)
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for a mode-0 or mode-1 incident wave, and

A0T − Cg0A0Y = i
[
α0Cg0A0 + r−1

10 (β+
01)
∗Cg1B0

]
, (4.10a)

B0T − Cg1B0Y = i
[
α1Cg1B0 + r10β

+
01Cg0A0 + r−1

21 (β−12)
∗Cg2C0

]
, (4.10b)

C0T + Cg2C0Y = i
[
α2Cg2C0 + r21β

−
12Cg1B0

]
, (4.10c)

for a mode-2 incident wave. Coupling occurs between mode-0 and mode-1 edge
waves propagating in the same directions and between mode-1 and mode-2 edge
waves propagating in opposite directions. No direct coupling occurs between mode-0
and mode-2 edge waves (A0 and C0 do not appear in the same equation). Energy
conservation follows from (4.9) or (4.10).

For simplicity further assume that the mean (y-averaged) profile does not deviate
from the plane beach, i.e. c0 = 0 in (2.3). The general solutions of (4.9) and (4.10) over
the undulating region 0 6 Y 6 L depend on the roots of the characteristic equation

(σ − α̃0)(σ − α̃1)(σ + α̃2) + |β−12|2(σ − α̃0)− |β+
01|2(σ + α̃2) = 0, (4.11)

where

α̃0 = 2k0Ω/ω, α̃1 = 1
2
(31/2 − 1)α̃0, α̃2 = (2− 31/2)α̃0, (4.12)

which in turn depend on the frequency detuning of the incident wave Ω. The
cubic polynomial characteristic equation (4.11) has three distinct real roots when
0 6 |Ω| < Ω1, one real and two complex conjugate roots when Ω1 < |Ω| < Ω2, and
three distinct real roots when |Ω| > Ω2. When (4.11) has three different roots σ1, σ2,
and σ3, the general solutions for (4.9) and (4.10) can be written as

{A0, B0, C0}T = C{eiσ1Y , eiσ2Y , eiσ3Y }Te−iΩT , (4.13)

where C is a 3 × 3 matrix and superscript T denotes matrix transpose. The lengthy
expressions for Ω1, Ω2, σ1, σ2, σ3, and the elements of C are omitted for brevity.

For perfect tuning (Ω = 0), the solution (4.13) to (4.9) and (4.10) simplifies to

A0 = D
(|β+

01|2 cosRY − |β−12|2 cosRL
)
, B0 = iD

Cg0

Cg1

r10(β
+
01)
∗R sinRY , (4.14a,b)

C0 = D
Cg0

Cg2

r20(β
+
01β
−
12)
∗(cosRL− cosRY ), (4.14c)

for a mode-0 incident wave,

A0 = i
Cg1

Cg0

β+
01

r10R

{|β+
01|2 sinRY + |β−12|2 [sinR(L− Y )− sinRL]

}
, (4.15a)

B0 = D
[|β+

01|2 cosRY − |β−12|2 cosR(L− Y )
]
, (4.15b)

C0 = i
Cg1

Cg2

r21(β
−
12)
∗

R

[|β+
01|2 (sinRL− sinRY )− |β−12|2 sinR(L− Y )

]
, (4.15c)

for a mode-1 incident wave, and

A0 = D
Cg2

Cg0

(β+
01β
−
12)
∗

r20

[cosR(L− Y )− 1] , B0 = i
Cg2

Cg1

(β−12)
∗R

r21

sinR(L− Y ), (4.16a,b)

C0 = D
[|β+

01|2 − |β−12|2 cosR(L− Y )
]
, (4.16c)
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Figure 2. Spatial variations of normalized energy fluxes (——, F+
00; · · · ·, F+

10; and - - -, F−20) for

multi-wave scattering at θ = π/12 over beach cusps spanning a fixed length |β+
01β
−
12|1/2L = 10.0, for

different detuning k0|β+
01β
−
12|−1/2|Ω|/ω = 0 (a), 1.5 (b), and 3.0 (c). The incident wave is mode 0.

for a mode-2 incident wave, where

D = a0g
[
2iω(|β+

01|2 − |β−12|2 cosRL)
]−1

, R =
(|β+

01|2 − |β−12|2
)1/2

> 0, (4.17)

r10 = (31/2 − 1)1/2, r20 = (2− 31/2)1/2, r21 = [(31/2 − 1)/2]1/2. (4.18)

All multi-wave solutions with perfect tuning Ω = 0 are periodic. From (4.14)–(4.16),
it can be shown that the following reciprocal property holds: F+

10(L) = F+
01(L),

F−20(0) = F−02(0), and F−21(0) = F−12(0).
Scattering by beach cusp topography given by εh1(x, y) = ace

−πx/λc cos(2πy/λc)
is considered first. For this particular topographic perturbation (corresponding to
p = (3 −√3)/4, q = 0 in (4.1CG)), the coupling coefficients are β+

01/k0 = 0.1036 and
β−12/k0 = 0.0163, and the Ω separating regions of different roots of the characteristic
equation (4.11) are k0|β+

01β
−
12|−1/2Ω1/ω = 1.045 and k0|β+

01β
−
12|−1/2Ω2/ω = 1.810. Over

a moderately short scattering region (e.g. |β+
01β
−
12|1/2L 6 1.0), backscattering is weak

regardless of the magnitude of the detuning and the mode number of the incident
wave. For a mode-0 or mode-1 incident wave, energy exchange mostly occurs between
two forward propagating mode-0 and mode-1 waves; for a mode-2 incident wave,
only a small portion (less than 10%) of the incident wave energy is transfered to the
two backscattered (mode-0 and mode-1) edge waves (not shown). Over a long beach
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cusp region, the variations of the normalized energy fluxes depend on the frequency
detuning |Ω|. The variations of energy fluxes over a long cusped region (|β+

01β
−
12|1/2L =

10.0) for Ω in each detuning region 0 6 |Ω| < Ω1, Ω1 < |Ω| < Ω2, and |Ω| > Ω2

with a mode-0 incident wave are shown in figure 2. When 0 6 |Ω| < Ω1 (figure 2a),
backscatter is insignificant, and the wave field over the perturbed depth is dominated
by nearly complete energy exchange between the incident mode-0 edge wave and the
forward scattered mode-1 edge wave. Note that the incident wave amplitude is slightly
amplified at some locations inside the undulating region. In the region Ω1 < |Ω| < Ω2

(figure 2b), the normalized energy flux of the backscattered mode-2 wave F−20 near the
upwave edge Y = 0 reaches 0.3; both F+

00 and F+
10 oscillatorily approach constants as

Y increases. In the region |Ω| > Ω2 (figure 2c), backscattering becomes insignificant
again; the amplitudes of both forward propagating waves oscillate over the perturbed
bathymetry with partial exchange of energy. As the detuning further increases (not
shown), both the magnitude and wavelength of the forward amplitude oscillations
decrease, indicating the weakening influence of the undulating region.

The variations of normalized energy fluxes outside a long undulating region as a
function of normalized detuning are shown in figure 3 for a mode-0 incident wave.
With small detuning 0 6 |Ω| < Ω1 (i.e. k0|β+

01β
−
12|−1/2|Ω|/ω < 1.045) that includes

the perfect tuning case, backscattering into the mode-2 wave is insignificant for all
region lengths, and transmission of the incident mode-0 wave is nearly complete for
the particular value |β+

01β
−
12|1/2L = 10.0 in figure 3(a). However, transmission depends

periodically on the region length (as expected from figure 2a) and can be small
for different normalized lengths (e.g. |β+

01β
−
12|1/2L = 9.5 in figure 3b). With increased

detuning (Ω1 < |Ω| < Ω2), the results over a long undulating region are less sensitive
to the region length. Backscattering of the incident mode-0 wave energy flux to mode
2 is maximum (about 40%, dashed lines in figure 3) with detuning in this region
(i.e. 1.045 < k0|β+

01β
−
12|−1/2|Ω|/ω < 1.810). As detuning further increases (|Ω| > Ω2),

backscattering again weakens and most of the incident wave energy reaches the
downwave region Y > L as mode-1 and/or the original mode-0 incident edge wave.

Over the same perturbed region, the variations of the normalized energy fluxes of a
mode-1 incident wave (F+

11), forward scattered mode-0 wave (F+
01), and backscattered

mode-2 wave (F−21) are similar to those of the corresponding energy fluxes for a
mode-0 incident wave (F+

00, F
+
10, and F−20), respectively, except that more incident wave

energy flux is backscattered into mode-2 with a mode-1 incident wave (as much as
70%) than with a mode-0 incident wave (40%) in the region Ω1 < |Ω| < Ω2 (cf.
dashed lines in figures 3a and 4 for 1.045 < k0|β+

01β
−
12|−1/2|Ω|/ω < 1.810). Note that

F+
01(L) is identical to F+

10(L) for arbitrary detuning Ω (cf. solid line in figure 4 with
dotted line in figure 3a).

With a mode-2 incident wave, the scattered mode-0 and mode-1 waves are both
backward propagating, in contrast to the cases of a mode-0 or mode-1 incident wave
where one scattered wave is forward propagating. Consequently, the variations of
energy fluxes over the same undulating region with a mode-2 incident wave differ
from those with a mode-0 or mode-1 incident wave. For instance, results over a
long corrugated region with a mode-2 incident wave are not sensitive to the region
length L, in contrast to a mode-0 or mode-1 incident wave. Over a corrugated region
of any length, the energy fluxes of both mode-0 and mode-1 backscattered waves
are small when 0 6 |Ω| < Ω1 or |Ω| > Ω2, and even a long undulating region has
little effect on the mode-2 incident wave (figure 5). However, when Ω1 < |Ω| < Ω2,
F−02, F

−
12, and F+

22 monotonically decrease during propagation over a long undulating
region (contrast figure 6 with 2b). Almost no energy reaches the downwave end of the
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Figure 3. Variations of energy fluxes at the edges of the undulating region Y = 0, L (——,
F+

00(L); · · · ·, F+
10(L); and - - -, F−20(0)) versus the detuning k0|β+

01β
−
12|−1/2|Ω|/ω for region length

|β+
01β
−
12|1/2L = 10.0 (a) and 9.5 (b). F+

00(L) = 1 corresponds to complete transmission of the mode-0
incident wave.
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Figure 4. Variations of energy fluxes (——, F+
01(L); · · · ·, F+

11(L); and - - -, F−21(0)) versus the detuning

k0|β+
01β
−
12|−1/2|Ω|/ω with fixed |β+

01β
−
12|1/2L = 10.0. F+

11(L) = 1 corresponds to complete transmission
of the mode-1 incident wave.

perturbed bathymetry, resulting in nearly complete backscattering (i.e. F+
22(L) ≈ 0 and

F−02(0)+F−12(0) ≈ 1 in figures 5 and 6). More incident wave energy flux is backscattered
to mode 1 than to mode 0 in this detuning region (cf. dotted line with solid line in
figures 5 and 6). The reciprocal property holds for all detuning values: F−02(0) = F−20(0)
and F−12(0) = F−21(0) (cf. solid line in figure 5 with dashed line in figure 3a and dotted
line in figure 5 with dashed line in figure 4).

The multi-wave scattering results presented above are not sensitive to the particular
assumed cross-shore variation of the depth perturbation. Almost identical results are
obtained for beach cusps with a range of plausible p and q values in the more
general cusp perturbation (4.1CG) discussed in CG, because the ratio |β+

01/β
−
12|, the

only parameter determining the scaled results plotted in figures 2–6, is almost the
same. For bathymetry roughly resembling the crescentic bars observed at Duck, North
Carolina (discussed in CG), the variations of normalized energy fluxes are similar to
the corresponding results above for beach cusps.
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Figure 5. Variations of energy fluxes (——, F−02(0); · · · ·, F−12(0); and - - -, F+
22(L)) versus the detuning

k0|β+
01β
−
12|−1/2|Ω|/ω with fixed |β+

01β
−
12|1/2L = 10.0. F+

22(L) = 1 corresponds to complete transmission
of the mode-2 incident wave.
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Figure 6. Spatial variations of energy fluxes (——, F−02; · · · ·, F−12; and - - -, F+
22) for multi-wave

scattering at θ = π/12 over beach cusps spanning a fixed length |β+
01β
−
12|1/2L = 10.0 for a mode-2

incident wave with detuning k0|β+
01β
−
12|−1/2|Ω|/ω = 1.5.

5. Discussion
Simple corrections to the shallow water evolution equations accounting for the

differences in the exact and shallow water dispersion relations are given in § 3 for
single-wave scattering and in § 4 for multi-wave scattering involving mode-0 and

mode-1 edge waves. The size of these corrections is proportional to θ̂2 = θ2/ε. For

sufficiently large θ̂2, the corrections may change the character of the incident and
scattered wave fields. For resonant scattering by beach cusps (4.1CG) and crescentic
bars (4.5CG), the ordering parameter ε = ack0/ tan θ, where ac is the amplitude of

the undulations. It follows that θ̂2 = θ2/ε = θ2 tan θ/ack0 ≈ θ3/ack0.
CG applied the shallow water scattering theory to undulating bathymetry with

shapes and dimensions roughly resembling field observations of cusps at Parramore
Island and crescentic bars at Duck Beach. These topographies are considered here.
The first row in table 1 gives the normalized finite-slope corrections ∆K/|β−nm| =

[2 + (2n + 1)(2m + 1)]θ̂2kt/12|β−nm| (from (3.20)) for single-wave backscattering B00,

B01, B02, and B12, and k0|β+
01β
−
11|−1/2θ̂2 for multi-wave scattering M01, of a perfectly

tuned (based on the shallow water dispersion relation) incident wave propagating
over Parramore beach cusps εh1(x, y) = ace

−πx/λc cos(2πy/λc). The first row in table 2
gives similar results for the Duck crescentic bar (4.5CG). In the single-wave backscat-
tering case, the threshold value ∆K/|β−nm| = 1 corresponds to a change from exactly
resonant scattering with exponentially decaying amplitudes over the perturbed region
to supercritical scattering with oscillatory amplitudes. In the multi-wave scattering

case, the threshold value of k0|β+
01β
−
11|−1/2θ̂2 corresponding to a change from nearly

complete backscattering to dominant forward scattering (cf. figure 1a with 1b–d) is
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B00 B01 B02 B12 M01

∆K/|β−nm| 0.031 0.104 0.216 0.542 k0|β+
01β
−
11|−1/2θ̂2 0.281

θc(rad) 0.222 0.149 0.117 0.086 θc (rad) 0.087

Table 1. Finite-slope effect on low-mode edge wave scattering by beach cusps at Parramore Island.

Values of the normalized finite-slope corrections (∆K/|β−nm| and k0|β+
01β
−
11|−1/2θ̂2) and critical slope

angle (θc) are listed. The cusp dimensions are λc = 20 m, tan θ = 0.07, and ac = 0.035 m (from
Guza & Bowen 1981).

B00 B01 B02 B12 M01

∆K/|β−nm| 0.007 0.034 0.109 0.067 k0|β+
01β
−
11|−1/2θ̂2 0.052

θc (rad) 0.157 0.092 0.063 0.074 θc (rad) 0.065

Table 2. Finite-slope effect on low-mode edge wave scattering by Duck crescentic sandbar (4.5, in
Chen & Guza 1998) with λc = 250 m, tan θ = 0.03, ac = 0.5 m, b = 50 m, and c = 0.0314 m−1.

0.545 for the Parramore beach cusps and 0.521 for the Duck crescentic bar. The

beach angles θc corresponding to ∆K/|β−nm| = 1 and k0|β+
01β
−
11|−1/2θ̂2 = 0.545 or 0.521

are given in the second row of the tables. For single-wave backscattering, ∆K/|β−nm|
generally increases and θc decreases as mode numbers increase, consistent with the
expectation that finite-slope corrections increase in importance as the mode number

increases. For all cases considered, ∆K/|β−nm| and k0|β+
01β
−
11|−1/2θ̂2 are less than their

threshold values, and θc is greater than the actual beach slope angle. Thus, the shallow
water results given by CG are at least qualitatively correct.
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